3.4.65 \(\int \frac {(7+5 x^2)^2}{\sqrt {4+3 x^2+x^4}} \, dx\) [365]

3.4.65.1 Optimal result
3.4.65.2 Mathematica [C] (verified)
3.4.65.3 Rubi [A] (verified)
3.4.65.4 Maple [C] (verified)
3.4.65.5 Fricas [A] (verification not implemented)
3.4.65.6 Sympy [F]
3.4.65.7 Maxima [F]
3.4.65.8 Giac [F]
3.4.65.9 Mupad [F(-1)]

3.4.65.1 Optimal result

Integrand size = 24, antiderivative size = 170 \[ \int \frac {\left (7+5 x^2\right )^2}{\sqrt {4+3 x^2+x^4}} \, dx=\frac {25}{3} x \sqrt {4+3 x^2+x^4}+\frac {20 x \sqrt {4+3 x^2+x^4}}{2+x^2}-\frac {20 \sqrt {2} \left (2+x^2\right ) \sqrt {\frac {4+3 x^2+x^4}{\left (2+x^2\right )^2}} E\left (2 \arctan \left (\frac {x}{\sqrt {2}}\right )|\frac {1}{8}\right )}{\sqrt {4+3 x^2+x^4}}+\frac {167 \left (2+x^2\right ) \sqrt {\frac {4+3 x^2+x^4}{\left (2+x^2\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {x}{\sqrt {2}}\right ),\frac {1}{8}\right )}{6 \sqrt {2} \sqrt {4+3 x^2+x^4}} \]

output
25/3*x*(x^4+3*x^2+4)^(1/2)+20*x*(x^4+3*x^2+4)^(1/2)/(x^2+2)+167/12*(x^2+2) 
*(cos(2*arctan(1/2*x*2^(1/2)))^2)^(1/2)/cos(2*arctan(1/2*x*2^(1/2)))*Ellip 
ticF(sin(2*arctan(1/2*x*2^(1/2))),1/4*2^(1/2))*((x^4+3*x^2+4)/(x^2+2)^2)^( 
1/2)*2^(1/2)/(x^4+3*x^2+4)^(1/2)-20*(x^2+2)*(cos(2*arctan(1/2*x*2^(1/2)))^ 
2)^(1/2)/cos(2*arctan(1/2*x*2^(1/2)))*EllipticE(sin(2*arctan(1/2*x*2^(1/2) 
)),1/4*2^(1/2))*2^(1/2)*((x^4+3*x^2+4)/(x^2+2)^2)^(1/2)/(x^4+3*x^2+4)^(1/2 
)
 
3.4.65.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 10.31 (sec) , antiderivative size = 331, normalized size of antiderivative = 1.95 \[ \int \frac {\left (7+5 x^2\right )^2}{\sqrt {4+3 x^2+x^4}} \, dx=\frac {50 \sqrt {-\frac {i}{-3 i+\sqrt {7}}} x \left (4+3 x^2+x^4\right )-30 \sqrt {2} \left (3 i+\sqrt {7}\right ) \sqrt {\frac {-3 i+\sqrt {7}-2 i x^2}{-3 i+\sqrt {7}}} \sqrt {\frac {3 i+\sqrt {7}+2 i x^2}{3 i+\sqrt {7}}} E\left (i \text {arcsinh}\left (\sqrt {-\frac {2 i}{-3 i+\sqrt {7}}} x\right )|\frac {3 i-\sqrt {7}}{3 i+\sqrt {7}}\right )+\sqrt {2} \left (43 i+30 \sqrt {7}\right ) \sqrt {\frac {-3 i+\sqrt {7}-2 i x^2}{-3 i+\sqrt {7}}} \sqrt {\frac {3 i+\sqrt {7}+2 i x^2}{3 i+\sqrt {7}}} \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {-\frac {2 i}{-3 i+\sqrt {7}}} x\right ),\frac {3 i-\sqrt {7}}{3 i+\sqrt {7}}\right )}{6 \sqrt {-\frac {i}{-3 i+\sqrt {7}}} \sqrt {4+3 x^2+x^4}} \]

input
Integrate[(7 + 5*x^2)^2/Sqrt[4 + 3*x^2 + x^4],x]
 
output
(50*Sqrt[(-I)/(-3*I + Sqrt[7])]*x*(4 + 3*x^2 + x^4) - 30*Sqrt[2]*(3*I + Sq 
rt[7])*Sqrt[(-3*I + Sqrt[7] - (2*I)*x^2)/(-3*I + Sqrt[7])]*Sqrt[(3*I + Sqr 
t[7] + (2*I)*x^2)/(3*I + Sqrt[7])]*EllipticE[I*ArcSinh[Sqrt[(-2*I)/(-3*I + 
 Sqrt[7])]*x], (3*I - Sqrt[7])/(3*I + Sqrt[7])] + Sqrt[2]*(43*I + 30*Sqrt[ 
7])*Sqrt[(-3*I + Sqrt[7] - (2*I)*x^2)/(-3*I + Sqrt[7])]*Sqrt[(3*I + Sqrt[7 
] + (2*I)*x^2)/(3*I + Sqrt[7])]*EllipticF[I*ArcSinh[Sqrt[(-2*I)/(-3*I + Sq 
rt[7])]*x], (3*I - Sqrt[7])/(3*I + Sqrt[7])])/(6*Sqrt[(-I)/(-3*I + Sqrt[7] 
)]*Sqrt[4 + 3*x^2 + x^4])
 
3.4.65.3 Rubi [A] (verified)

Time = 0.30 (sec) , antiderivative size = 177, normalized size of antiderivative = 1.04, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.208, Rules used = {1518, 1511, 27, 1416, 1509}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (5 x^2+7\right )^2}{\sqrt {x^4+3 x^2+4}} \, dx\)

\(\Big \downarrow \) 1518

\(\displaystyle \frac {1}{3} \int \frac {60 x^2+47}{\sqrt {x^4+3 x^2+4}}dx+\frac {25}{3} \sqrt {x^4+3 x^2+4} x\)

\(\Big \downarrow \) 1511

\(\displaystyle \frac {1}{3} \left (167 \int \frac {1}{\sqrt {x^4+3 x^2+4}}dx-120 \int \frac {2-x^2}{2 \sqrt {x^4+3 x^2+4}}dx\right )+\frac {25}{3} \sqrt {x^4+3 x^2+4} x\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{3} \left (167 \int \frac {1}{\sqrt {x^4+3 x^2+4}}dx-60 \int \frac {2-x^2}{\sqrt {x^4+3 x^2+4}}dx\right )+\frac {25}{3} \sqrt {x^4+3 x^2+4} x\)

\(\Big \downarrow \) 1416

\(\displaystyle \frac {1}{3} \left (\frac {167 \left (x^2+2\right ) \sqrt {\frac {x^4+3 x^2+4}{\left (x^2+2\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {x}{\sqrt {2}}\right ),\frac {1}{8}\right )}{2 \sqrt {2} \sqrt {x^4+3 x^2+4}}-60 \int \frac {2-x^2}{\sqrt {x^4+3 x^2+4}}dx\right )+\frac {25}{3} \sqrt {x^4+3 x^2+4} x\)

\(\Big \downarrow \) 1509

\(\displaystyle \frac {1}{3} \left (\frac {167 \left (x^2+2\right ) \sqrt {\frac {x^4+3 x^2+4}{\left (x^2+2\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {x}{\sqrt {2}}\right ),\frac {1}{8}\right )}{2 \sqrt {2} \sqrt {x^4+3 x^2+4}}-60 \left (\frac {\sqrt {2} \left (x^2+2\right ) \sqrt {\frac {x^4+3 x^2+4}{\left (x^2+2\right )^2}} E\left (2 \arctan \left (\frac {x}{\sqrt {2}}\right )|\frac {1}{8}\right )}{\sqrt {x^4+3 x^2+4}}-\frac {x \sqrt {x^4+3 x^2+4}}{x^2+2}\right )\right )+\frac {25}{3} \sqrt {x^4+3 x^2+4} x\)

input
Int[(7 + 5*x^2)^2/Sqrt[4 + 3*x^2 + x^4],x]
 
output
(25*x*Sqrt[4 + 3*x^2 + x^4])/3 + (-60*(-((x*Sqrt[4 + 3*x^2 + x^4])/(2 + x^ 
2)) + (Sqrt[2]*(2 + x^2)*Sqrt[(4 + 3*x^2 + x^4)/(2 + x^2)^2]*EllipticE[2*A 
rcTan[x/Sqrt[2]], 1/8])/Sqrt[4 + 3*x^2 + x^4]) + (167*(2 + x^2)*Sqrt[(4 + 
3*x^2 + x^4)/(2 + x^2)^2]*EllipticF[2*ArcTan[x/Sqrt[2]], 1/8])/(2*Sqrt[2]* 
Sqrt[4 + 3*x^2 + x^4]))/3
 

3.4.65.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 1416
Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c 
/a, 4]}, Simp[(1 + q^2*x^2)*(Sqrt[(a + b*x^2 + c*x^4)/(a*(1 + q^2*x^2)^2)]/ 
(2*q*Sqrt[a + b*x^2 + c*x^4]))*EllipticF[2*ArcTan[q*x], 1/2 - b*(q^2/(4*c)) 
], x]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]
 

rule 1509
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbo 
l] :> With[{q = Rt[c/a, 4]}, Simp[(-d)*x*(Sqrt[a + b*x^2 + c*x^4]/(a*(1 + q 
^2*x^2))), x] + Simp[d*(1 + q^2*x^2)*(Sqrt[(a + b*x^2 + c*x^4)/(a*(1 + q^2* 
x^2)^2)]/(q*Sqrt[a + b*x^2 + c*x^4]))*EllipticE[2*ArcTan[q*x], 1/2 - b*(q^2 
/(4*c))], x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 
- 4*a*c, 0] && PosQ[c/a]
 

rule 1511
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbo 
l] :> With[{q = Rt[c/a, 2]}, Simp[(e + d*q)/q   Int[1/Sqrt[a + b*x^2 + c*x^ 
4], x], x] - Simp[e/q   Int[(1 - q*x^2)/Sqrt[a + b*x^2 + c*x^4], x], x] /; 
NeQ[e + d*q, 0]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && Pos 
Q[c/a]
 

rule 1518
Int[((d_) + (e_.)*(x_)^2)^(q_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x 
_Symbol] :> Simp[e^q*x^(2*q - 3)*((a + b*x^2 + c*x^4)^(p + 1)/(c*(4*p + 2*q 
 + 1))), x] + Simp[1/(c*(4*p + 2*q + 1))   Int[(a + b*x^2 + c*x^4)^p*Expand 
ToSum[c*(4*p + 2*q + 1)*(d + e*x^2)^q - a*(2*q - 3)*e^q*x^(2*q - 4) - b*(2* 
p + 2*q - 1)*e^q*x^(2*q - 2) - c*(4*p + 2*q + 1)*e^q*x^(2*q), x], x], x] /; 
 FreeQ[{a, b, c, d, e, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + 
 a*e^2, 0] && IGtQ[q, 1]
 
3.4.65.4 Maple [C] (verified)

Result contains complex when optimal does not.

Time = 0.52 (sec) , antiderivative size = 224, normalized size of antiderivative = 1.32

method result size
default \(\frac {188 \sqrt {1-\left (-\frac {3}{8}+\frac {i \sqrt {7}}{8}\right ) x^{2}}\, \sqrt {1-\left (-\frac {3}{8}-\frac {i \sqrt {7}}{8}\right ) x^{2}}\, F\left (\frac {x \sqrt {-6+2 i \sqrt {7}}}{4}, \frac {\sqrt {2+6 i \sqrt {7}}}{4}\right )}{3 \sqrt {-6+2 i \sqrt {7}}\, \sqrt {x^{4}+3 x^{2}+4}}+\frac {25 x \sqrt {x^{4}+3 x^{2}+4}}{3}-\frac {640 \sqrt {1-\left (-\frac {3}{8}+\frac {i \sqrt {7}}{8}\right ) x^{2}}\, \sqrt {1-\left (-\frac {3}{8}-\frac {i \sqrt {7}}{8}\right ) x^{2}}\, \left (F\left (\frac {x \sqrt {-6+2 i \sqrt {7}}}{4}, \frac {\sqrt {2+6 i \sqrt {7}}}{4}\right )-E\left (\frac {x \sqrt {-6+2 i \sqrt {7}}}{4}, \frac {\sqrt {2+6 i \sqrt {7}}}{4}\right )\right )}{\sqrt {-6+2 i \sqrt {7}}\, \sqrt {x^{4}+3 x^{2}+4}\, \left (3+i \sqrt {7}\right )}\) \(224\)
risch \(\frac {188 \sqrt {1-\left (-\frac {3}{8}+\frac {i \sqrt {7}}{8}\right ) x^{2}}\, \sqrt {1-\left (-\frac {3}{8}-\frac {i \sqrt {7}}{8}\right ) x^{2}}\, F\left (\frac {x \sqrt {-6+2 i \sqrt {7}}}{4}, \frac {\sqrt {2+6 i \sqrt {7}}}{4}\right )}{3 \sqrt {-6+2 i \sqrt {7}}\, \sqrt {x^{4}+3 x^{2}+4}}+\frac {25 x \sqrt {x^{4}+3 x^{2}+4}}{3}-\frac {640 \sqrt {1-\left (-\frac {3}{8}+\frac {i \sqrt {7}}{8}\right ) x^{2}}\, \sqrt {1-\left (-\frac {3}{8}-\frac {i \sqrt {7}}{8}\right ) x^{2}}\, \left (F\left (\frac {x \sqrt {-6+2 i \sqrt {7}}}{4}, \frac {\sqrt {2+6 i \sqrt {7}}}{4}\right )-E\left (\frac {x \sqrt {-6+2 i \sqrt {7}}}{4}, \frac {\sqrt {2+6 i \sqrt {7}}}{4}\right )\right )}{\sqrt {-6+2 i \sqrt {7}}\, \sqrt {x^{4}+3 x^{2}+4}\, \left (3+i \sqrt {7}\right )}\) \(224\)
elliptic \(\frac {188 \sqrt {1-\left (-\frac {3}{8}+\frac {i \sqrt {7}}{8}\right ) x^{2}}\, \sqrt {1-\left (-\frac {3}{8}-\frac {i \sqrt {7}}{8}\right ) x^{2}}\, F\left (\frac {x \sqrt {-6+2 i \sqrt {7}}}{4}, \frac {\sqrt {2+6 i \sqrt {7}}}{4}\right )}{3 \sqrt {-6+2 i \sqrt {7}}\, \sqrt {x^{4}+3 x^{2}+4}}+\frac {25 x \sqrt {x^{4}+3 x^{2}+4}}{3}-\frac {640 \sqrt {1-\left (-\frac {3}{8}+\frac {i \sqrt {7}}{8}\right ) x^{2}}\, \sqrt {1-\left (-\frac {3}{8}-\frac {i \sqrt {7}}{8}\right ) x^{2}}\, \left (F\left (\frac {x \sqrt {-6+2 i \sqrt {7}}}{4}, \frac {\sqrt {2+6 i \sqrt {7}}}{4}\right )-E\left (\frac {x \sqrt {-6+2 i \sqrt {7}}}{4}, \frac {\sqrt {2+6 i \sqrt {7}}}{4}\right )\right )}{\sqrt {-6+2 i \sqrt {7}}\, \sqrt {x^{4}+3 x^{2}+4}\, \left (3+i \sqrt {7}\right )}\) \(224\)

input
int((5*x^2+7)^2/(x^4+3*x^2+4)^(1/2),x,method=_RETURNVERBOSE)
 
output
188/3/(-6+2*I*7^(1/2))^(1/2)*(1-(-3/8+1/8*I*7^(1/2))*x^2)^(1/2)*(1-(-3/8-1 
/8*I*7^(1/2))*x^2)^(1/2)/(x^4+3*x^2+4)^(1/2)*EllipticF(1/4*x*(-6+2*I*7^(1/ 
2))^(1/2),1/4*(2+6*I*7^(1/2))^(1/2))+25/3*x*(x^4+3*x^2+4)^(1/2)-640/(-6+2* 
I*7^(1/2))^(1/2)*(1-(-3/8+1/8*I*7^(1/2))*x^2)^(1/2)*(1-(-3/8-1/8*I*7^(1/2) 
)*x^2)^(1/2)/(x^4+3*x^2+4)^(1/2)/(3+I*7^(1/2))*(EllipticF(1/4*x*(-6+2*I*7^ 
(1/2))^(1/2),1/4*(2+6*I*7^(1/2))^(1/2))-EllipticE(1/4*x*(-6+2*I*7^(1/2))^( 
1/2),1/4*(2+6*I*7^(1/2))^(1/2)))
 
3.4.65.5 Fricas [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 118, normalized size of antiderivative = 0.69 \[ \int \frac {\left (7+5 x^2\right )^2}{\sqrt {4+3 x^2+x^4}} \, dx=\frac {240 \, \sqrt {2} {\left (\sqrt {-7} x - 3 \, x\right )} \sqrt {\sqrt {-7} - 3} E(\arcsin \left (\frac {\sqrt {2} \sqrt {\sqrt {-7} - 3}}{2 \, x}\right )\,|\,\frac {3}{8} \, \sqrt {-7} + \frac {1}{8}) - \sqrt {2} {\left (193 \, \sqrt {-7} x - 861 \, x\right )} \sqrt {\sqrt {-7} - 3} F(\arcsin \left (\frac {\sqrt {2} \sqrt {\sqrt {-7} - 3}}{2 \, x}\right )\,|\,\frac {3}{8} \, \sqrt {-7} + \frac {1}{8}) + 80 \, \sqrt {x^{4} + 3 \, x^{2} + 4} {\left (5 \, x^{2} + 12\right )}}{48 \, x} \]

input
integrate((5*x^2+7)^2/(x^4+3*x^2+4)^(1/2),x, algorithm="fricas")
 
output
1/48*(240*sqrt(2)*(sqrt(-7)*x - 3*x)*sqrt(sqrt(-7) - 3)*elliptic_e(arcsin( 
1/2*sqrt(2)*sqrt(sqrt(-7) - 3)/x), 3/8*sqrt(-7) + 1/8) - sqrt(2)*(193*sqrt 
(-7)*x - 861*x)*sqrt(sqrt(-7) - 3)*elliptic_f(arcsin(1/2*sqrt(2)*sqrt(sqrt 
(-7) - 3)/x), 3/8*sqrt(-7) + 1/8) + 80*sqrt(x^4 + 3*x^2 + 4)*(5*x^2 + 12)) 
/x
 
3.4.65.6 Sympy [F]

\[ \int \frac {\left (7+5 x^2\right )^2}{\sqrt {4+3 x^2+x^4}} \, dx=\int \frac {\left (5 x^{2} + 7\right )^{2}}{\sqrt {\left (x^{2} - x + 2\right ) \left (x^{2} + x + 2\right )}}\, dx \]

input
integrate((5*x**2+7)**2/(x**4+3*x**2+4)**(1/2),x)
 
output
Integral((5*x**2 + 7)**2/sqrt((x**2 - x + 2)*(x**2 + x + 2)), x)
 
3.4.65.7 Maxima [F]

\[ \int \frac {\left (7+5 x^2\right )^2}{\sqrt {4+3 x^2+x^4}} \, dx=\int { \frac {{\left (5 \, x^{2} + 7\right )}^{2}}{\sqrt {x^{4} + 3 \, x^{2} + 4}} \,d x } \]

input
integrate((5*x^2+7)^2/(x^4+3*x^2+4)^(1/2),x, algorithm="maxima")
 
output
integrate((5*x^2 + 7)^2/sqrt(x^4 + 3*x^2 + 4), x)
 
3.4.65.8 Giac [F]

\[ \int \frac {\left (7+5 x^2\right )^2}{\sqrt {4+3 x^2+x^4}} \, dx=\int { \frac {{\left (5 \, x^{2} + 7\right )}^{2}}{\sqrt {x^{4} + 3 \, x^{2} + 4}} \,d x } \]

input
integrate((5*x^2+7)^2/(x^4+3*x^2+4)^(1/2),x, algorithm="giac")
 
output
integrate((5*x^2 + 7)^2/sqrt(x^4 + 3*x^2 + 4), x)
 
3.4.65.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\left (7+5 x^2\right )^2}{\sqrt {4+3 x^2+x^4}} \, dx=\int \frac {{\left (5\,x^2+7\right )}^2}{\sqrt {x^4+3\,x^2+4}} \,d x \]

input
int((5*x^2 + 7)^2/(3*x^2 + x^4 + 4)^(1/2),x)
 
output
int((5*x^2 + 7)^2/(3*x^2 + x^4 + 4)^(1/2), x)